跳到主要內容

Building Abstractions with Procedures

I reread one of my favorite textbook, structure and interpretation of computer programs(SICP), recently. I would like to summarize some insights I got from the book to investigate some understandings with my previous experience . So the content would be some personal random notes and not for everyone. :-)

Here comes some from chapter 1, Building Abstractions with Procedures.

* Why using the a non-mainsteam programming language? Because Scheme has very simple syntax and flexible semantics to implement broad range of applications easily, that's so important for a computer science student to know the main ideas by constructing infrastructures so that they won't get lost among the fancy features coming up everyday. I think this is useful especially when programmers get mature. They will find out that language features are not so important. The important thing is to deeply understand the ideas behind the complex components. If we can construct toy examples, that will be huge for learners even though we might not really implement the components by ourselves in the future.

*  Procedures vs. functions. In computer science, procedures usually concern the imperative knowledge; in math, it  usually uses functions as the descriptive knowledge. That means programmers need to know the exact steps to figure out some questions even the procedures they write using only descriptive knowledge. It also means reasoning the logic is necessary otherwise we can't confirm the correctness of answers with computers. This might look hard first for researchers in AI nowadays since the models they are building no one can really understand... I think that is an alert for them. :-)

* Recursion can be a good tool to solve problems. It's exactly like induction in mathematics. Once we confirm the problems can be divided into same problems, but just smaller, this approach can be used to model our solution. So what is the difference between math and programming? Sometime, no. :-)

* Iterative vs. recursive. This is an implementation issue, it's not about the form of code. t's about the semantics it should be. Although many languages use recursion to implement all recursive procedure.

* First-class procedures. Lambda calculus is an amazing tool to construct the world. Once we can use it naturally, we can reason the logic of program and model the concepts by encoding them with functions. This may be not easy to interact with real-world. However, it's an inspiration to me to rethink problems at hand.

* Procedures as arguments can make the procedure more abstract to problems so  that the functions could be more generic. Procedures as return values can provide callers the appropriate operations in runtime. Combining these 2 methods can make programmers to reach a new milestone of understanding abstractions. Modeling fix-point is a good example but might be hard to understand at the first glance.

留言

這個網誌中的熱門文章

淺讀Linux root file system初始化流程

在Unix的世界中,file system佔據一個極重要的抽象化地位。其中,/ 所代表的rootfs更是所有後續新增file system所必須依賴前提條件。以Linux為例,黑客 Jserv 就曾經詳細說明過 initramfs的背後設計考量 。本篇文章不再重複背景知識,主要將追蹤rootfs初始化的流程作點整理,免得自己日後忘記。 :-) file system與特定CPU架構無關,所以我觀察的起點從init/main.c的start_kernel()開始,這是Linux作完基本CPU初始化後首先跳進的C function(我閱讀的版本為 3.12 )。跟root file system有關的流程羅列如下: start_kernel()         -> vfs_caches_init_early()         -> vfs_caches_init()                 -> mnt_init()                         -> init_rootfs()                         -> init_mount_tree()         -> rest_init()                 -> kernel_thread(kernel_init,...) 其中比較重要的是mnt_int()中的init_rootfs()與init_mout_tree()。init_rootfs()實作如下: int __init init_root...

誰在呼叫我?不同的backtrace實作說明好文章

今天下班前一個同事問到:如何在Linux kernel的function中主動印出backtrace以方便除錯? 寫過kernel module的人都知道,基本上就是用dump_stack()之類的function就可以作到了。但是dump_stack()的功能是如何作到的呢?概念上其實並不難,慣用手法就是先觀察stack在function call時的變化(一般OS或計組教科書都有很好的說明,如果不想翻書,可以參考 這篇 ),然後將對應的return address一層一層找出來後,再將對應的function名稱印出即可(透過執行檔中的section去讀取函式名稱即可,所以要將KALLSYM選項打開)。在userspace的實作可參考Jserv介紹過的 whocallme 或對岸好手實作過的 backtrace() ,都是針對x86架構的很好說明文章。 不過從前面兩篇文章可以知道,只要知道編譯器的calling convention,就可以實作出backtrace,所以是否GCC有提供現成的機制呢?Yes, that is what __builtin_return_address() for!! 可以參考這篇 文章 。該篇文章還提到了其他可以拿來實作功能更齊全的backtrace的 程式庫 ,在了解了運作原理後,用那些東西還蠻方便的。 OK,那Linux kernel是怎麼做的呢?就是用頭兩篇文章的方式啦~ 每個不同的CPU架構各自手工實作一份dump_stack()。 為啥不用GCC的機制?畢竟...嗯,我猜想,除了backtrace以外,開發者還會想看其他register的值,還有一些有的沒的,所以光是GCC提供的介面是很難印出全部所要的資訊,與其用半套GCC的機制,不如全都自己來~ arm的實作 大致上長這樣,可以看到基本上就只是透過迭代fp, lr, pc來完成: 352 void unwind_backtrace (struct pt_regs * regs , struct task_struct *tsk) 353 { 354 struct stackframe frame ; 355 register unsigned long current_sp asm ( "...

中文試譯:Writing a game in Python with Pygame. Part I

原文作者: Eli Bendersky 原文連結: http://eli.thegreenplace.net/2008/12/13/writing-a-game-in-python-with-pygame-part-i/ 簡介 遊戲是最能應用程式設計技巧的領域之一。為了寫出最簡單的遊戲,你必須跟圖像、數學、物理甚至是人工智慧打交道。寫遊戲非常酷,而且也是練習程式設計的有趣方式。 如果你是Python的粉絲(就算你不是也無妨),並且對遊戲有興趣,那麼 Pygame 就是很屌的遊戲程式設計庫,你一定要注意它。它可以在所有主要的平台執行,並提供簡單的工具去管理複雜的、充滿變動與音效的世界。 在網路上有很多Pygame的教學,但大都太過簡單了。甚至是 Pygame book 都停留在入門的程度。為了達到更高的水準,我決定自己寫一套教學文件,希望可以為那些使用Pygame的朋友提供進階的學習。 這份教學鼓勵讀者去把玩程式碼,也非常建議對最後的練習題作些功課。這樣作可以讓你對這些教學有更好的瞭解。 預備知識 因為我在前面提過的理由,這份教學並不是給完全的初學者閱讀的。如果你才開始接觸 Pygame,先到這個 網頁 裡看一些基本的教學。這份 教學 也很適合初學Pygame。 在這篇文章,我假設你有下列知識:     >>Python(你不必是進階使用者,但也不能是完全的菜鳥)     >>基本的數學與物理(向量、矩形、運動定律、機率等等)。我會解釋所有不那麼明顯的部份,但我不會教你如何對向量作加法。     >>對Pygame有一些瞭解。你至少必須有瀏覽過在上面提到的教學裡的例子。 喔,還有一件事...這份教學主要考慮2D遊戲。3D有著另一層的困難度,我以後會提出一個自行開發一部份、簡單、不過足夠完整的3D demo。 我們開始吧! 在這個部份,我們最後會完成一個模擬 - 有著在地上爬的小生物,會蠕動,然後碰到牆壁也會反彈,並偶而改變它們的行進方向: 這當然不是一個遊戲,不過卻是一個很有用的開頭,讓我們可以實作不同的想法。我延遲給出這個遊戲最終會變成的模樣,當作給我自己的奢侈享受。 程式碼 part 1的完整程式碼...