跳到主要內容

Interactions between fork, stdio buffers and exit

TLPI一書在說明fork()、stdio buffers以及exit()之間的關係時,舉了一個有趣的例子,大家先看看下面的程式碼與執行結果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{
        printf("Hello\n");
        write(STDOUT_FILENO, "world\n", 6);

        if (fork() == -1) {
                write(STDERR_FILENO, "fork err\n", 9);
                exit(EXIT_FAILURE);
        }

        exit(EXIT_SUCCESS);
}

執行看看:

[mars@dream sys_call]$ ./fork_puzzle
Hello
world

看起來沒有什麼奇怪,但如果是下面這樣的執行結果,你還覺得理所當然嗎? :-)

[mars@dream sys_call]$ ./fork_puzzle > log
[mars@dream sys_call]$ cat log
world
Hello
Hello

乍看之下,奇怪的事情發生了:world比Hello先印出來,而且Hello還印了兩遍。然而,熟悉C stdlib的實作方式與UNIX的fork()語意後,就很容易解釋這個現象了,思路如下:
  1. 因為write()只是system call的C wrapper,所以呼叫時會立即執行,預設I/O模型會在執行完畢後才返回。
  2. printf()為了避免頻繁呼叫write(),會有一塊user space的buffer來存放多道printf()裡的字串內容,在輸出為標準輸出時,預設採用line-buffered,在輸出為檔案時,則為block-buffered。
  3. 當fork()執行後,child會有parent幾乎相等同的一份memory image copy,因此複製了printf()的unflushed string buffer。
  4. 於是,當導出到檔案時,printf()在block buffer尚未滿前不會輸出,因此造成write()先輸出,然後執行fork()後child也會有一份"Hello\n",並在exit()時被強制輸出。
解決方式有好幾種,可以在每次printf()後都用fflush(),或儘量不要混用printf()與write()。

我們可以看到,這個例子反應的其實就是現實軟體開發的縮影,為了效能,printf()引進了新機制,卻也在某種情況下引起新問題。有趣的是,只要我們能讓好處多於壞處,那麼引進的改善就是有效的,但也必須時時刻刻記住可能的抽象洩漏會在何時回踢我們一腳。 :-)

留言

  1. 類似的概念也可用來解釋下面的小謎題,有興趣的朋友可以確認一下自己對UNIX programming的理解是否足夠~ :-)

    [mars@dream sys_call]$ cat exec_puzzle.c
    #include <stdio.h>
    #include <unistd.h>

    int main(void)
    {
    printf("Hello\n");
    execlp("sleep", "sleep", "0", NULL);
    }
    [mars@dream sys_call]$ ./exec_puzzle
    Hello
    [mars@dream sys_call]$ ./exec_puzzle > log
    [mars@dream sys_call]$ cat log

    回覆刪除

張貼留言

這個網誌中的熱門文章

誰在呼叫我?不同的backtrace實作說明好文章

今天下班前一個同事問到:如何在Linux kernel的function中主動印出backtrace以方便除錯? 寫過kernel module的人都知道,基本上就是用dump_stack()之類的function就可以作到了。但是dump_stack()的功能是如何作到的呢?概念上其實並不難,慣用手法就是先觀察stack在function call時的變化(一般OS或計組教科書都有很好的說明,如果不想翻書,可以參考 這篇 ),然後將對應的return address一層一層找出來後,再將對應的function名稱印出即可(透過執行檔中的section去讀取函式名稱即可,所以要將KALLSYM選項打開)。在userspace的實作可參考Jserv介紹過的 whocallme 或對岸好手實作過的 backtrace() ,都是針對x86架構的很好說明文章。 不過從前面兩篇文章可以知道,只要知道編譯器的calling convention,就可以實作出backtrace,所以是否GCC有提供現成的機制呢?Yes, that is what __builtin_return_address() for!! 可以參考這篇 文章 。該篇文章還提到了其他可以拿來實作功能更齊全的backtrace的 程式庫 ,在了解了運作原理後,用那些東西還蠻方便的。 OK,那Linux kernel是怎麼做的呢?就是用頭兩篇文章的方式啦~ 每個不同的CPU架構各自手工實作一份dump_stack()。 為啥不用GCC的機制?畢竟...嗯,我猜想,除了backtrace以外,開發者還會想看其他register的值,還有一些有的沒的,所以光是GCC提供的介面是很難印出全部所要的資訊,與其用半套GCC的機制,不如全都自己來~ arm的實作 大致上長這樣,可以看到基本上就只是透過迭代fp, lr, pc來完成: 352 void unwind_backtrace (struct pt_regs * regs , struct task_struct *tsk) 353 { 354 struct stackframe frame ; 355 register unsigned long current_sp asm ( "

淺讀Linux root file system初始化流程

在Unix的世界中,file system佔據一個極重要的抽象化地位。其中,/ 所代表的rootfs更是所有後續新增file system所必須依賴前提條件。以Linux為例,黑客 Jserv 就曾經詳細說明過 initramfs的背後設計考量 。本篇文章不再重複背景知識,主要將追蹤rootfs初始化的流程作點整理,免得自己日後忘記。 :-) file system與特定CPU架構無關,所以我觀察的起點從init/main.c的start_kernel()開始,這是Linux作完基本CPU初始化後首先跳進的C function(我閱讀的版本為 3.12 )。跟root file system有關的流程羅列如下: start_kernel()         -> vfs_caches_init_early()         -> vfs_caches_init()                 -> mnt_init()                         -> init_rootfs()                         -> init_mount_tree()         -> rest_init()                 -> kernel_thread(kernel_init,...) 其中比較重要的是mnt_int()中的init_rootfs()與init_mout_tree()。init_rootfs()實作如下: int __init init_rootfs(void) {         int err = register_filesystem(&rootfs_fs_type);         if (err)                 return err;         if (IS_ENABLED(CONFIG_TMPFS) && !saved_root_name[0] &&                 (!root_fs_names || strstr(root_fs_names, "tmpfs"))) {          

kernel panic之後怎麼辦?

今天同事在處理一個陌生的模組時遇到kernel panic,Linux印出了backtrace,同事大致上可以知道是在哪個function中,但該function的長度頗長,短時間無法定位在哪個位置,在這種情況下,要如何收斂除錯範圍呢?更糟的是,由於加入printk會改變模組行為,所以printk基本上無法拿來檢查參數的值是否正常。 一般這樣的問題會backtrace的資訊來著手。從這個資訊我們可以知道在function中的多少offset發生錯誤,以x86為例(從 LDD3 借來的例子): Unable to handle kernel NULL pointer dereference at virtual address 00000000 printing eip: d083a064 Oops: 0002 [#1] SMP CPU:    0 EIP:    0060:[<d083a064>]    Not tainted EFLAGS: 00010246   (2.6.6) EIP is at faulty_write+0x4/0x10 [faulty] eax: 00000000   ebx: 00000000   ecx: 00000000   edx: 00000000 esi: cf8b2460   edi: cf8b2480   ebp: 00000005   esp: c31c5f74 ds: 007b   es: 007b   ss: 0068 Process bash (pid: 2086, threadinfo=c31c4000 task=cfa0a6c0) Stack: c0150558 cf8b2460 080e9408 00000005 cf8b2480 00000000 cf8b2460 cf8b2460        fffffff7 080e9408 c31c4000 c0150682 cf8b2460 080e9408 00000005 cf8b2480        00000000 00000001 00000005 c0103f8f 00000001 080e9408 00000005 00000005 Call Trace:  [<c0150558>] vfs